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orine stabilization). Since the structure of these systems did 
not permit the incorporation of a fluorine atom on the ylidic 
carbon (carbanion site), it was not possible to assess the role 
of a fluorine (destabilization)5 on the fate of the initial addi­
tion-elimination product.6 

We now report the first example of the role of a fluorine in 
the mechanistic course of the reaction of F-1-alkenes with 
tertiary phosphines. When hexafluoropropene (HFP) was 
allowed to react with n-tributylphosphine,7 no evidence of any 
stable ylide could be obtained.8 Instead, the F-vinylphospho-
rane was obtained in nearly quantitative yield—with the Z 
isomer formed stereoselectively.9" Table I summarizes the 
data for several related systems that behave analogously to 
HFP. The reactions are facile, clean, and give excellent yields 
of the vinylphosphoranes. Note, that, with F-l-pentene, F-
1-heptene, and 2-phenyl-F-l-butene, that only the terminal 
vinylphosphorane is formed. No isomeric phosphoranes, which 
could be formed by an S N 2 ' reaction, were ever observed. 

,CF=CF, + Bu,P - ^ - => [CF,CF=CFPBu,]F" V » CF0CF0CFPBu 
J t J _ 7 Qo t 0 R i T _ i i / ^ S i 

C F 3 Fa 
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The Role of a and /? Fluorine in Product 
Determination of Fluoro Olefin-Tertiary Phosphine 
Reactions. Ylide vs. Vinylphosphorane Formation1 

Sir: 

Recent reports have documented the facile conversion of 
cyclic F-alkenes into stable phosphonium and ammonium yl-
ides.2-4 The stability of these unusual fluorinated carbanions 
has been attributed to the inductive effect of the difluo-
romethylene groups adjacent to the carbanionic site3 (/3-flu-

However, when F-2-butene was employed under similar 
conditions in this reaction, only the phosphonium ylide was 
observed; no vinylphosphorane was detected.12-14 Thus, the 
F-2-butene behavior is analogous to the cyclic F-alkenes. 
Comparison of the potential phosphonium ylides that could 
be formed from the reaction of /M-alkenes, F-2-aIkenes, and 
cyclic F-alkenes with tertiary phosphines, and the respective 
stability of these ylides, illustrates the role of a and (3 fluorine 
in the determination of the fate of the reaction course. When 
only /3 fluorines are present (F-2-butene and cyclic f-alkenes), 
the initial addition-elimination adduct is converted into the 
phosphonium ylide. However, when both a and /3 fluorines are 
present, the ylide is either not formed or exhibits only transient 
stability, and the vinylphosphorane becomes the stable 
product. 

Bu 
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Consequently, the fate of the initially formed addition-
elimination product in F-alkene-tertiary phosphine reactions 
can be confidently predicted by assessment of the a and /3 
fluorines in this intermediate. When no a fluorines are present, 
conversion into the phosphonium ylide will become the major 
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pathway, whereas vinylphosphorane formation will predomi­
nate when a fluorines are present in this intermediate. Our 
work continues to explore these unusual phosphoranes and 
carbanions. 
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3-Pyridylmethylene: 
Infrared Spectrum and Photochemistry 

Sir: 

We describe here the first infrared spectrum of an aryl 
carbene, 3-pyridylmethylene, and the photochemistry of this 
intriguing intermediate. Irradiation (>4740 A) of 3-diazo-
methylpyridine (1) matrix isolated in argon gives a new 
product with infrared absorption bands at 1595, 1520, 1379, 
1325, 1233, 1221, 1110, 1015,990,983,943,788,688,628, 
600, 550, 505, 441, and 430 cirT1 (Figure 1). The presence of 
intense bands at 788 and 688 cm-1 shows that the 3-substituted 
pyridine ring is still intact. Comparison of the infrared spec­
trum of 3/y-(3-pyridyl)diazirine (2)1 matrix isolated in argon 

Scheme I 

CHN, 
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hv 
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35-40 K 
CO 

hv 
,CHN 2 >4740 A 

/ >4200 A 

with that of the photoproduct established that the photoproduct 
was not the diazirine. Irradiation (>4740 A) of 1 in an argon 
matrix containing carbon monoxide (1.5%) gave the same 
photoproduct and a trace of 3-pyridylketene (3) (Scheme I). 
When the matrix was warmed to 35-40 K, the bands due to 
the photoproduct decreased, and the bands due to 1 and 3 in­
creased. The identity of 3 was established by an alternate 
synthesis. Irradiation of matrix isolated 3-pyridyl diazomethyl 
ketone (4)2 gave 3 identical in infrared absorption with that 
obtained in the thermal reaction of the photoproduct. It is thus 
clear that the photoproduct is 3-pyridylmethylene (5). The 
electron spin resonance spectrum of 5 (triplet ground state) 
has been described.3 The species observed in the electron spin 
resonance experiment has the same behavior with respect to 
wavelength effects in its formation and destruction (vide infra) 
as the species observed in the infrared experiment. Irradiation 
(>4740 A) of 3-(deuteriodiazomethyl)pyridine4 gave 3-py-
ridyldeuteriomethylene. The infrared spectra of 5 and its 
deuterio derivative are strikingly similar. Bands at 505 and 441 
cm-1, however, are shifted to 353 and 305 cm-1 in the deuterio 
derivative. This suggests that the bands at 505 and 441 cm"1 

are due to deformation modes of the methylene C-H. Pa-
canksy5 has assigned similar low frequency (550-500 cm-1) 
bands in the infrared spectra of alkyl radicals to the defor­
mation modes of the C-H bonds at the radical center, and 
cyanomethylene shows a deformation mode at 458 cm - ' .6 

Irradiation (>3640 A) of 3-diazomethylpyridine (1), 3-
pyridylmethylene (5), or 4-diazomethylpyridine (6) gives 1-
aza-l,3,4,6-cycloheptatetraene (7).3 Irradiation of 5 with 
longer wavelength light (>4200 A) gives 7 and a new species 
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